Academic Qualifications
Education:
Ph.D. in Computer Science and Engineering Department
From 4 Jan 2016 to 19 Nov 2019, Indian Institute of Technology, Patna, Bihar, India.
Supervisor: Dr. Jimson Mathew
Thesis title: "Explorations in Metric Learning with Applications to clustering and classification"
Research Areas of Interest
Machine Learning
- Sub Areas: Metric Learning, Shallow Domain Adaptation.
Deep Learning
- Sub Areas: Transfer Learning, Deep Domain Adaptation, Domain Transfer, Zero-shot Learning, Few-shot Learning .
Robotics Intelligence
- Sub Areas: Reinforcement Learning for navigation and Object Manipulation, Automation .
AI/ML Applications
- Sub Areas: Remote Sensing, Underwater Object Recognition, Precision Agriculture, Disease Identification.
Awards / Honours
- OpenGovDataHack National Award (2nd Runners Up)
- International IoT Grant Challenge (Won Second Prize)
- Smart India Hackathon (Won First Prize)
- Intel @ Higher Education Challenge (Won First Prize)
- Postdoctoral:Selected at NTU, Singapore
- GATE Qualified:2012, 2013, 2014, 2015, 2016, 2017
- UGC-JRF Qualified:June-2015
- UGC-NET Qualified:Dec-2015, June-2015, Dec-2014, June-2014
- MHRD Travel Grant: to visit 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018
- CSIR Travel Grant: to visit IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, June 10-13, 2019
- SERB Travel Grant: to visit 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-15, 2019
Projects
- PI-CRG,SERB:Development of Novel Unsupervised Domain Adaptation Framework for Image Classification[2023-2026]
- Co-PI-ISRO: Advanced methods and algorithms for automatic information extraction for (online/offline) processing and analysis of images/data from various multi-source data [2023-2026]
Publications
Journal articles:
- O. Gilo, J. Mathew, S. Mondal, and R. K. Sandoniya, “Subdomain adaptation via correlation alignment with entropy minimization for unsupervised domain adaptation,” Pattern Analysis and Applications, vol. 27, no. 1, p. 13, 2024. doi: 10.1007/s10044-024-01232-9.
- R. Lekshmi, B. R. Jose, J. Mathew, and R. K. Sanodiya, “Mnemonic: Multikernel contrastive domain adaptation for time-series classification,” Engineering Applications of Artificial Intelligence, vol. 133,p. 108 255, 2024. doi: 10.1016/j.engappai.2024.108255.
- S. R. Singh, R. R. Yedla, S. R. Dubey, R. K. Sanodiya, and W.-T. Chu, “Frequency disentangled residual network,” Multimedia Systems, vol. 30, no. 1, pp. 1–13, 2024.
- A. Devika, R. K. Sanodiya, B. R. Jose, and J. Mathew, “Visual domain adaptation through locality information,” Engineering Applications of Artificial Intelligence, vol. 123, p. 106 172, 2023, issn: 0952-1976. doi: 10.1016/j.engappai.2023.106172.
- O. Gilo, J. Mathew, S. Mondal, and R. K. Sanodiya, “Rdaot: Robust unsupervised deep sub-domain adaptation through optimal transport for image classification,” IEEE Access, 2023.
- O. Gilo, J. Mathew, S. Mondal, and R. K. Sanodiya, “Unsupervised sub-domain adaptation using optimal transport,” Journal of Visual Communication and Image Representation, p. 103 857, 2023, issn: 1047-3203. doi: 10.1016/j.jvcir.2023.103857.
- R. R. P. Karn, R. K. Sanodiya, and P. Bajpai, “A unified framework for visual domain adaptation with covariance matching,” Knowledge-Based Systems, p. 110 894, 2023. doi: 10.1016/j.knosys.2023.110894.
- R. K. Lakshmi Sanodiya, B. R. Jose, and J. Mathew, “Kernelized global-local discriminant information preservation for unsupervised domain adaptation,” Applied Intelligence, pp. 1–23, 2023. doi: 10.1007/s10489-023-04706-1.
- S. Mishra and R. K. Sanodiya, “A novel angular based unsupervised domain adaptation framework for image classification,” IEEE Transactions on Artificial Intelligence, 2023, issn: 2691-4581. doi: 10.1109/TAI.2023.3293077.
- R. S. R. Singh and R. K. Sanodiya, “Zero-shot transfer learning framework for plant leaf disease classification,” IEEE Access, 2023.
- R. K. Sanodiya, S. Mishra, P. Arun, et al., “Manifold embedded joint geometrical and statistical alignment for visual domain adaptation,” Knowledge-Based Systems, vol. 257, p. 109 886, 2022, issn: 0950-7051. doi: 10.1016/j.knosys.2022.109886.
- R. K. Sanodiya, J. Mathew, R. Aditya, A. Jacob, and B. Nayanar, “Kernelized unified domain adaptation on geometrical manifolds,” Expert Systems with Applications, vol. 167, p. 114 078, 2021, issn: 0957-4174. doi: 10.1016/j.eswa.2020.114078.
- R. K. Sanodiya and L. Yao, “Discriminative information preservation: A general framework for unsupervised visual domain adaptation,” Knowledge-Based Systems, vol. 227, p. 107 158, 2021, issn: 0950-7051. doi: 10.1016/j.knosys.2021.107158.
- R. K. Sanodiya, J. Mathew, S. Saha, and P. Tripathi, “Particle swarm optimization based parameter selection technique for unsupervised discriminant analysis in transfer learning framework,” Applied Intelligence, vol. 50, pp. 3071–3089, 2020. doi: 10.1007/s10489-020-01710-7.
- R. K. Sanodiya, S. Saha, and J. Mathew, “Semi-supervised orthogonal discriminant analysis with relative distance: Integration with a moo approach,” Soft Computing, vol. 24, pp. 1599–1618, 2020, issn: 1432-7643. doi: 10.1007/s00500-019-03990-9.
- R. K. Sanodiya, M. Tiwari, J. Mathew, S. Saha, and S. Saha, “A particle swarm optimization-based feature selection for unsupervised transfer learning,” Soft Computing, vol. 24, pp. 18 713–18 731, 2020, issn: 1432-7643. doi: 10.1007/s00500-020-05105-1.
- R. K. Sanodiya and L. Yao, “A subspace based transfer joint matching with laplacian regularization for visual domain adaptation,” Sensors, vol. 20, no. 16, p. 4367, 2020, issn: 1424-8220. doi: 10.3390/s20164367.
- R. K. Sanodiya and L. Yao, “Linear discriminant analysis via pseudo labels: A unified framework for visual domain adaptation,” IEEE Access, vol. 8, pp. 200 073–200 090, 2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.3035422.
- R. K. Sanodiya and L. Yao, “Unsupervised transfer learning via relative distance comparisons,” IEEE Access, vol. 8, pp. 110 290–110 305, 2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.3002666.
- R. K. Sanodiya and J. Mathew, “A framework for semi-supervised metric transfer learning on manifolds,” Knowledge-Based Systems, vol. 176, pp. 1–14, 2019, issn: 0950-7051. doi: 10.1016/j.knosys.2019.03.021.
- R. K. Sanodiya and J. Mathew, “A novel unsupervised globality-locality preserving projections in transfer learning,” Image and Vision Computing, vol. 90, p. 103 802, 2019, issn: 0262-8856. doi: 10.1016/j.imavis.2019.08.006.
- R. K. Sanodiya, J. Mathew, B. Paul, and B. A. Jose, “A kernelized unified framework for domain adaptation,” IEEE Access, vol. 7, pp. 181 381–181 395, 2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.2958736.
- R. K. Sanodiya, J. Mathew, S. Saha, and M. D. Thalakottur, “A new transfer learning algorithm in semi-supervised setting,” IEEE Access, vol. 7, pp. 42 956–42 967, 2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.2907571.
- R. K. Sanodiya, S. Saha, and J. Mathew, “A kernel semi-supervised distance metric learning with relative distance: Integration with a moo approach,” Expert Systems with Applications, vol. 125,pp. 233–248, 2019, issn: 0957-4174. doi: 10.1016/j.eswa.2018.12.051.
Conference Proceeding:
- S. Jangala and R. K. Sanodiya, “A novel framework for multi-source domain adaptation with discriminative feature learning,” in 202/ International Joint Conference on Neural Networks (IJCNN), IEEE, 2023, pp. 1–7. doi: 10.1109/IJCNN54540.2023.10191410.
- A. S. Namboodiri, R. K. Sanodiya, and P. Arun, “Remote sensing cloud removal using a combination of spatial attention and edge detection,” in 202/ 11th International Symposium on Electronic Systems Devices and Computing (ESDC), IEEE, vol. 1, 2023, pp. 1–6. doi: 10.1109/ESDC56251.2023.10149875.
- N. R. Nandyala and R. K. Sanodiya, “Underwater object detection using synthetic data,” in 202/ 11th International Symposium on Electronic Systems Devices and Computing (ESDC), IEEE, vol. 1, 2023, pp. 1–6. doi: 10.1109/ESDC56251.2023.10149870.
- J. Prakash, M. Ghorai, and R. Sanodiya, “Transfer learning: Kernel-based domain adaptation with distance-based penalization,” in International Conference on Pattern Recognition and Machine Intelligence, Springer, 2023, pp. 189–198.
- B. Y. Reddy, S. R. Dubey, R. K. Sanodiya, and R. R. P. Karn, “Context unaware knowledge distillation for image retrieval,” in Computer Vision and Machine Intelligence: Proceedings of CVMI 2022, Springer, 2023, pp. 65–77. doi: 10.1007/978-981-19-7867-8_6.
- R. Sidibomma and R. K. Sanodiya, “Learning semantic representations and discriminative features in unsupervised domain adaptation,” in 202/ 11th International Symposium on Electronic Systems Devices and Computing (ESDC), IEEE, vol. 1, 2023, pp. 1–6. doi: 10.1109/ESDC56251.2023.10149872.
- S. Suryavardan, V. Pulabaigari, and R. K. Sanodiya, “Unsupervised domain adaptation supplemented with generated images,” in Neural Information Processing: 2yth International Conference, ICONIP 2022, Virtual Event, November 22–2G, 2022, Proceedings, Part IV, Springer, 2023, pp. 659–670. doi: 10.1007/978-981-99-1639-9_55.
- P. Bajpai and R. K. Sanodiya, “A unified framework for covariance adaptation with multiple source domains,” in 2022 IEEE yth Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, 2022, pp. 1–6. doi: 10.1109/UPCON56432.2022.9986432.
- R. R. P. Karn, R. K. Sanodiya, E. S. Chandaluri, S. Suryavardan, L. R. Reddy, and L. Yao, “Virtual try-on using style transfer,” in Responsible Data Science: Select Proceedings of ICDSE 2021, Springer, 2022,pp. 131–139. doi: 10.1007/978-981-19-4453-6_9.
- R. R. P. Karn, R. K. Sanodiya, T. Sharma, et al., “A feature and parameter selection approach for visual domain adaptation using particle swarm optimization,” in 2022 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2022, pp. 1–7. doi: 10.1109/CEC55065.2022.9870263.
- R. Lekshmi, R. K. Sanodiya, B. R. Jose, and J. Mathew, “Joint cross-domain preserving and distribution adaptation for heterogeneous domain adaptation,” in 2022 IEEE 1yth India Council International Conference (INDICON), IEEE, 2022, pp. 1–6. doi: 10.1109/INDICON56171.2022.10039779.
- S. Mishra and R. K. Sanodiya, “Scatter matrix normalization for unsupervised domain adaptation,” in 2022 IEEE yth Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, 2022, pp. 1–6. doi: 10.1109/UPCON56432.2022.9986396.
- R. Satya Rajendra Singh, R. K. Sanodiya, and P. Arun, “Joint geometrical and statistical alignment using triplet loss for deep domain adaptation,” in Responsible Data Science: Select Proceedings of ICDSE 2021, Springer, 2022, pp. 119–130. doi: 10.1007/978-981-19-4453-6_8.
- R. Lekshmi, R. K. Sanodiya, R. Linda, B. R. Jose, and J. Mathew, “Kernelized transfer feature learning on manifolds,” in Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part II 28, Springer, 2021, pp. 297–308. doi:10.1007/978-3-030-92270-2_26.
- R. K. Sanodiya, C. Sharma, S. Satwik, A. Challa, S. Rao, and L. Yao, “A novel metric learning framework for semi-supervised domain adaptation,” in Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I 28, Springer, 2021, pp. 165–176. doi: 10.1007/978-3-030-92185-9_14.
- M. Tiwari, R. K. Sanodiya, J. Mathew, and S. Saha, “A particle swarm optimization based feature selection approach for multi-source visual domain adaptation,” in Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part V 28, Springer, 2021, pp. 701–709. doi: 10.1007/978-3-030-92307-5_82.
- M. Tiwari, R. K. Sanodiya, J. Mathew, and S. Saha, “Multi-source based approach for visual domain adaptation,” in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, pp. 1–7. doi: 10.1109/IJCNN52387.2021.9534305.
- L. Yao, S. Prasad, R. K. Sanodiya, and D. Paul, “Statistical and geometrical alignment for unsupervised deep domain adaptation,” in Proceedings of International Conference on Machine Intelligence and Data Science Applications: MIDAS 2020, Springer, 2021, pp. 433–444. doi: 10.1007/978-981-33-4087-9_37.
- R. K. Sanodiya, P. Kumar, M. Tiwari, L. Yao, and J. Mathew, “A modified joint geometrical and statistical alignment approach for low-resolution face recognition,” in Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 2/–27, 2020, Proceedings, Part I 27, Springer, 2020, pp. 88–100. doi: 10.1007/978-3-030-63830-6_8.
- R. K. Sanodiya, A. Mathew, J. Mathew, and M. Khushi, “Statistical and geometrical alignment using metric learning in domain adaptation,” in 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9206877.
- R. K. Sanodiya, D. Paul, L. Yao, J. Mathew, and A. Juhi, “A feature selection approach to visual domain adaptation in classification,” in Neural Information Processing: 27th International Conference, ICONIP2020, Bangkok, Thailand, November 2/–27, 2020, Proceedings, Part II 27, Springer, 2020, pp. 77–89. Doi: 10.1007/978-3-030-63833-7_7.
- R. K. Sanodiya, S. Saha, J. Mathew, M. D. Thalakottur, and U. Aadya, “Multi-objective approach for semi-supervised discriminant analysis with relative distance,” in 201y IEEE Congress on Evolutionary Computation (CEC), IEEE, 2019, pp. 2808–2815. doi: 10.1109/CEC.2019.8790027.
- R. K. Sanodiya, C. Sharma, and J. Mathew, “Unified framework for visual domain adaptation using globality-locality preserving projections,” in Neural Information Processing: 2Gth International Conference, ICONIP 201y, Sydney, NSW, Australia, December 12–15, 201y, Proceedings, Part I 2G, Springer, 2019, pp. 340–351. doi: 10.1007/978-3-030-36708-4_28.
- R. K. Sanodiya, M. D. Thalakottur, J. Mathew, and M. Khushi, “Semi-supervised regularized coplanar discriminant analysis,” in Neural Information Processing: 2Gth International Conference, ICONIP 201y, Sydney, NSW, Australia, December 12–15, 201y, Proceedings, Part V 2G, Springer, 2019, pp. 198–205. doi: 10.1007/978-3-030-36802-9_22.
- R. K. Sanodiya, S. Saha, and J. Mathew, “A multi-kernel semi-supervised metric learning using multi-objective optimization approach,” in Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 1/–1G, 2018, Proceedings, Part II 25, Springer, 2018 pp. 530–541. doi: 10.1007/978-3-030-04179-3_47.
- R. K. Sanodiya, S. Saha, J. Mathew, and P. Bangwal, “Semi-supervised transfer metric learning with relative constraints,” in Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 1/–1G, 2018, Proceedings, Part III 25, Springer, 2018, pp. 230–241. doi: 10.1007/978-3-030-04182-3_21.
- R. K. Sanodiya, S. Saha, J. Mathew, and A. Raj, “Supervised and semi-supervised multi-task binary classification,” in Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 1/-1G, 2018, Proceedings, Part IV 25, Springer, 2018, pp. 380–391. doi: 10.1007/978-3-030-04212-7_33.
Students
PhD Student
1. Satya Rajendra Singh:Completed[2020-2024]
Thesis Topic: Exploration in Convolutional Neural Network Models with Applications to Image Classifi- cation and Retrieval.
2. Ravi Ranjan Karn:On going[2021-]
Thesis Topic: Exploration of Domain Adaptation Approaches for Image Classification.
MTech Student
1.Midhun V:Completed [2022]
Thesis Topic: Domain Adaptation for Semi-supervised Semantic Segmentation. Company: Mercedes Benz.
BTech with Honors (Research) Student
Batch [2023-2025]
1.Animesh Shree-H25RKS02
Project Topic: Exploring Deep Domain Adaptation Approaches for Image Classification.
2.Aarav Nigam -H25RKS01
Project Topic: Navigation using Reinforcement Learning.
3.Ashraf Ali-H25RKS03
Project Topic: Development of Deep Learning Techniques for activity recognition.
4.Subhangi-H25RKS04
Project Topic: Development of Shallow Domain Adaptation Approaches for Image Classification.
Batch [2022-2024]
1.Rushendra Sidibomma-H24RKS01
Project Topic: Exploring Deep Learning Approaches for Unsupervised Domain Adaptation.
Publication: Conf. Pub. 11th-IEEE ESDC-202/.
2. Amal S Namboodiri-H24RKS02
Project Topic: Exploring Deep Learning Approaches for Remote Sensing.
Publication: Conf. Pub. 11th IEEE-ESDC-202/.
3. Sampreeth Jangala-H24RKS03
Project Topic: Exploring Deep Learning Approaches for Image Classification.
Publication: Conf. Pub. IEEE-IJCNN-202/.
4. Nitish Reddy-H24RKS04
Project Topic: Exploration Deep Learning Approaches for Underwater Object Recognition.
Publication: Conf. Pub. 11th- IEEE ESDC-202/.
Batch [2021-2023]
1.Shreyash Mishra
Project Topic: Exploration of Shallow Domain Adaptation Approaches for Image Classification.
Publication: Trans. Pub. IEEE TAI-202/, Joural Pub. KBS-2022, Conf. Pub. yth IEEE UPCON-2022.
2.Priyam Bajpai
Project Topic: Exploring Shallow Unsupervised Domain Adaptation Approaches for Image Classification.
Publication: Conf. Pub. yth- IEEE UPCON-2022.
Batch [2020-2022]
1. B Y Reddy
Project Topic: Context Unaware Knowledge Distillation for Image Retrieval.
Publication: Conf. Pub. CVMI-2022.
BTech with Project Student
Batch [2023]
1. Group B23RKS01: Lanka Sai Ramya, Kolusu Manasa, and Sneha H S
Project Topic: Exploring Generative Models for Precision Agriculture.
2. Group B23RKS02: Golla Lalith, Sai Srikar, and Manohar Shashank
Project Topic: Exploring Metric Learning Approaches for Image Classification.
3. Group B23RKS03: Aritro Ghosh, G. Yashswi, and V. Nithin
Project Topic: Exploring Metric Learning Approaches for Image Classification.
Batch [2022]
1. Group B22RKS01: R. Tholuchuru, V. Sathvik, and K. Sumanth
Project Topic: Semi-supervised Domain Adaptation.
2. Group B22RKS02:S. Kokanti, M. Shashank, and C. Anand
Project Topic: Metric Learning.
3. Group B22RKS03: A. Reddy, G. Chetan, and C. Teja
Project Topic: Unsupervised Domain Adaptation.
4. Group B22RKS04:H. Chowdary, M. Sheetal, and P. Vignesh
Project Topic: Virtual Try-on.
Batch [2021]
1. Group B21RKS01: Y. Akhilesh, K. Hrudai, and L. Praneeth
Project Topic: Object Recognition.
2. Group B21RKS03: C. Nikhilesh, N. Siva, Krishna, and N. Praneeth
Project Topic: Pose Estimation.
3. Group B21RKS03: C. Eswara, L. Reddy, and M. Sai
Project Topic: Exploring Generative Model.
4. Group B21RKS04: G. Vishnu, K. Lakshmi, and D. Pravnav
Project Topic: Deep Domain Adaptation.
5. Group B21RKS05: V. Hanseesha, R. Anusri, and D. Neeharika
Project Topic: Person Re-Identification.
6. Group B21RKS06: E. Suma, V. Amrutha, and B. Sairam
Project Topic: Object Detection and Localization.
Teaching
AY:[2023-2024]
Spring-24:
- Deep Learning
- Robotics Intelligence
Monsoon-23:
- Advanced data structure and Algorithm, Syllabus, PPT
- Full Stack Development-2
- Overview of Computer Workshop
AY:[2022-2023]
Spring-23:
- Deep Learning
- Robotics Intelligence
Monsoon-22:
- Advanced data structure and Algorithm
- Full Stack Development-2
AY:[2021-2022]
Spring-22:
- Robotics Intelligence
Monsoon-21:
- Database Management System
- Advanced data structure and Algorithm Computer Programming
AY:[2020-2021]
Spring-21:
- Web Application Development
- Enterprise Application Development
- Data Structure and Algorithm
- Probability and Statistical Theory
Services
Reviewer
Conferences:
- IJCNN-23,
- PReMI-23
Journals:
- Pattern Letter-Recognition,
- Artificial Intelligence,
- BMC Bioinformatics,
- Information Fusion,
- Neural Processing Letters,
- IEEE Transactions on Industrial Informatics,
- Machine Learning,
- Transaction on Asian and Low-Resource Language Information Pro- cessing
- Signal Image and Video Processing
- IEEE Access
Contact Information
Address for Communication:
Room No. 260, 2nd Floor, Academic Building, IIIT Sri City, Tirupati District-517646, Andhra Pradesh, India.